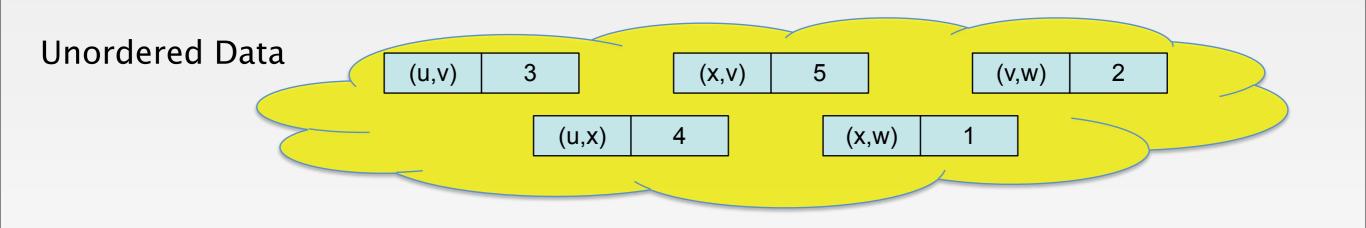
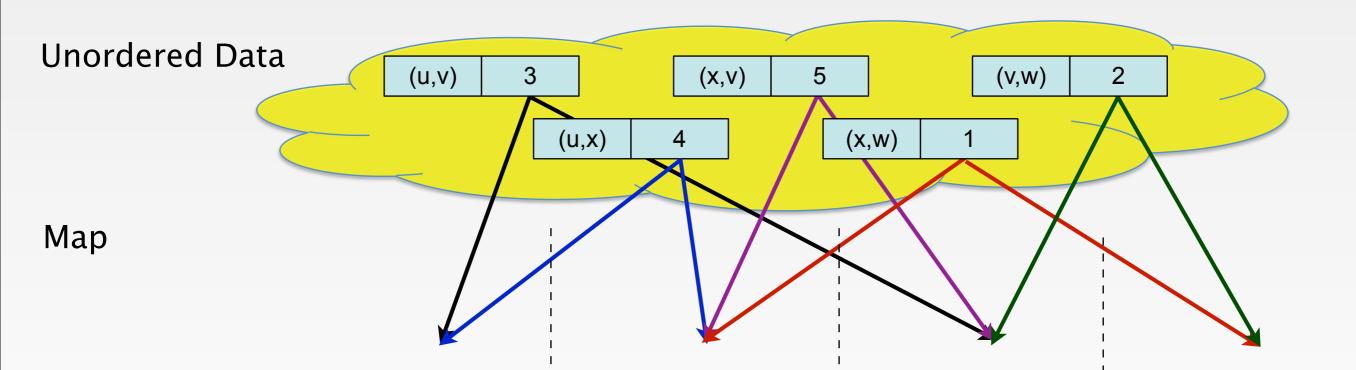
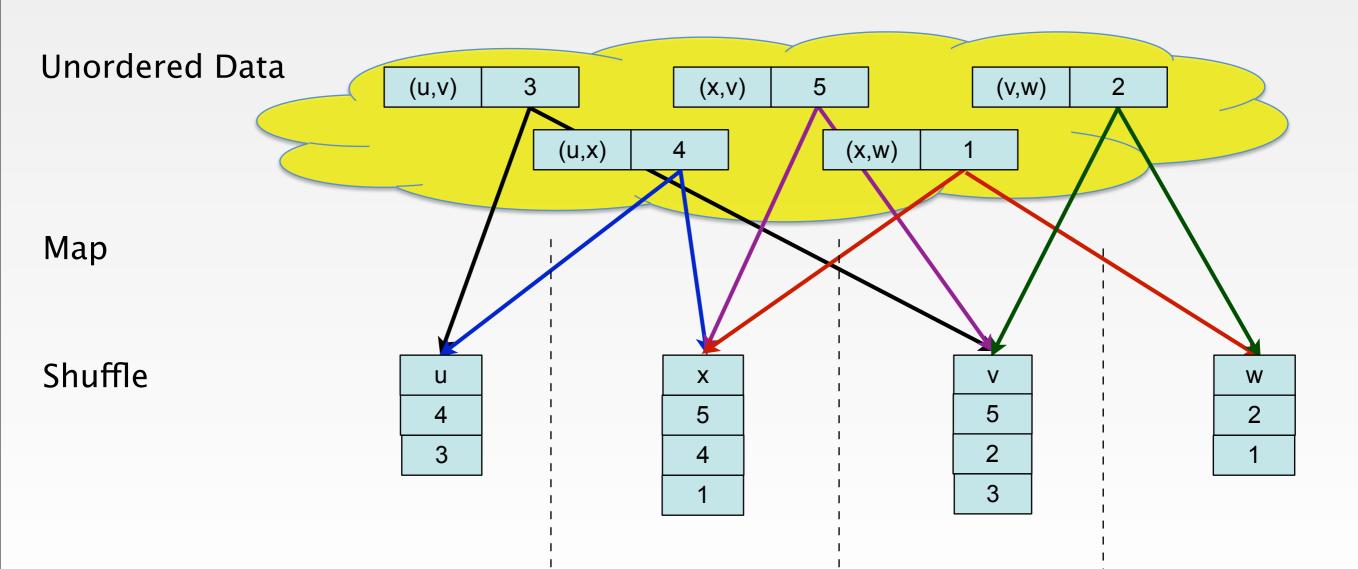
MapReduce Graph Algorithms

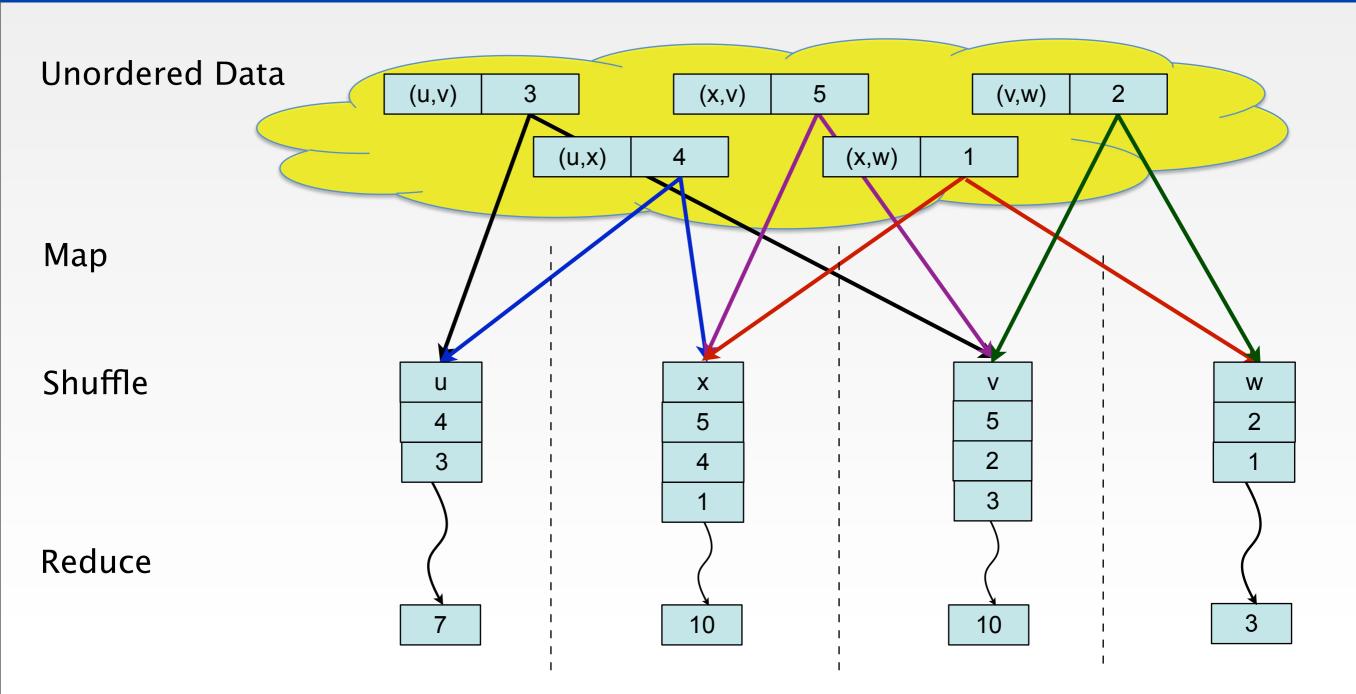
Sergei Vassilvitskii

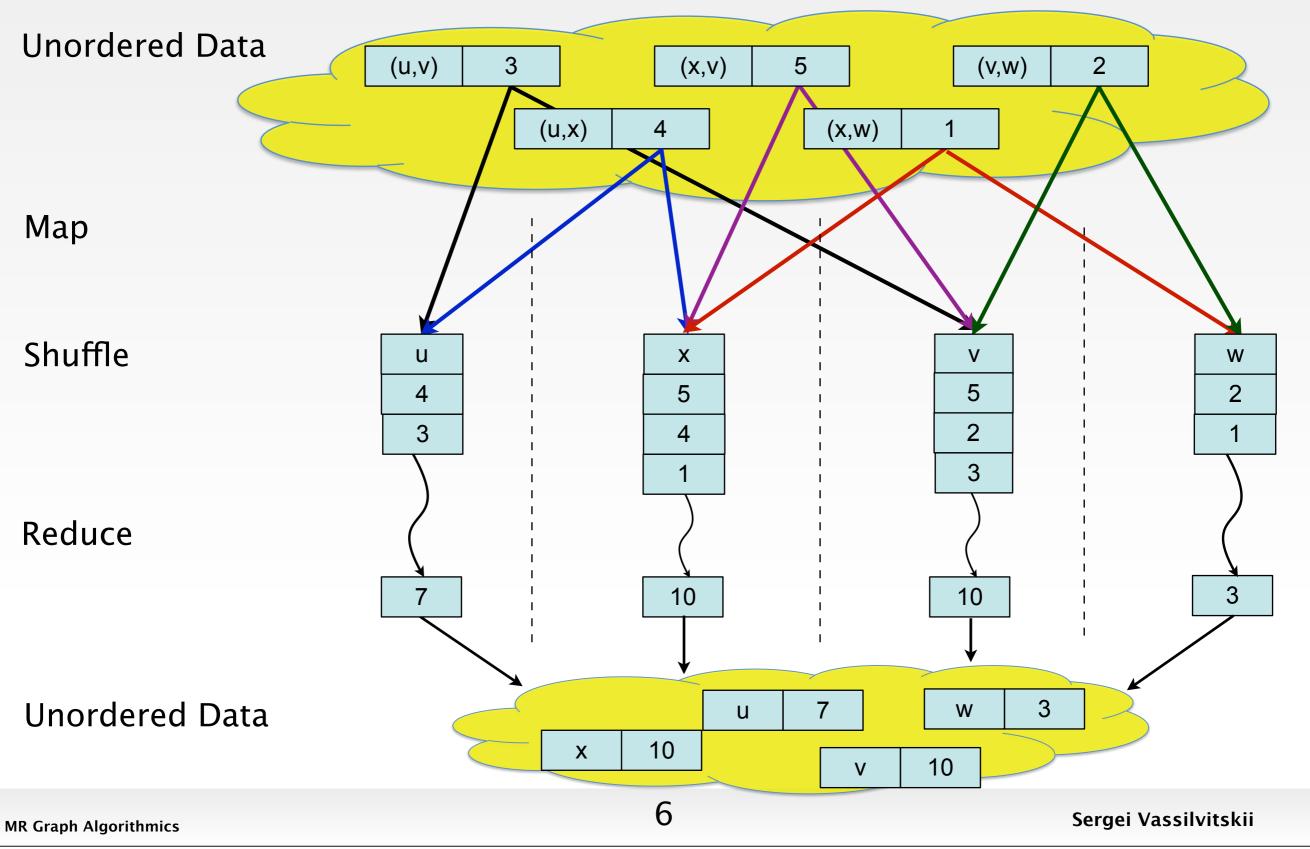
Reminder: MapReduce











Outline: Graph Algorithms

Dense Graphs

- Connectivity
- Matching

Sparse Graphs

- Pregel/Giraph Model
- Connectivity
- Matchings

Application

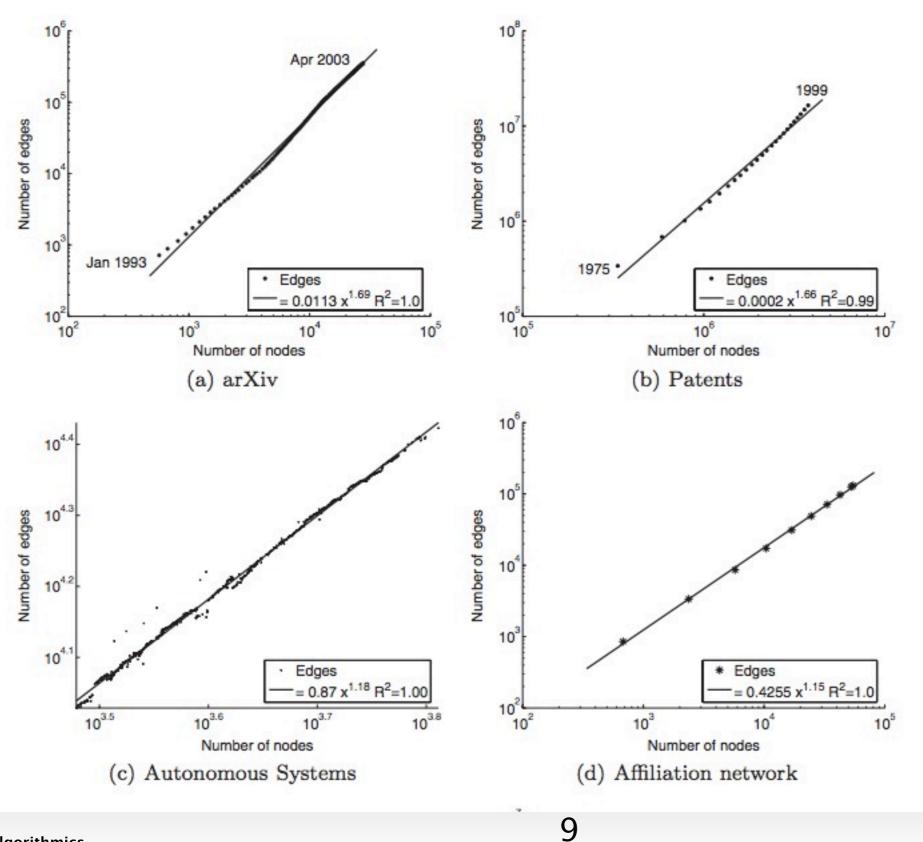
- Densest Subgraph

Dense Graphs

Are real world graphs:

- sparse: $m = \tilde{O}(n)$
- dense: $m = n^{1+c}$, for some c > 0 ?

Graphs over time



Sergei Vassilvitskii

MR Graph Algorithmics

Saturday, August 25, 12

Algorithmics

Find the core of the problem:

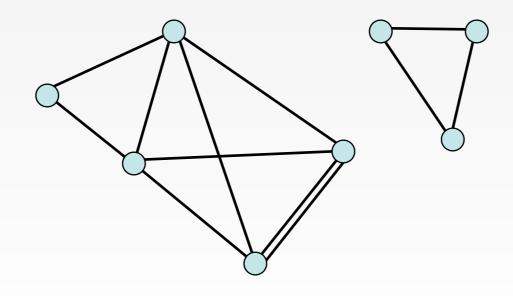
- Reduce the problem size in parallel
- Solve the smaller instance sequentially

Roadmap:

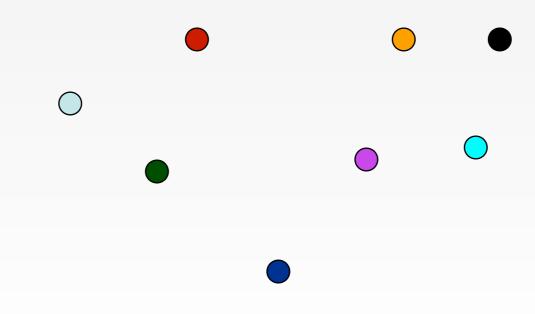
- Identify redundant information
- Filter out redundancy to reduce input size
- Solve the smaller problem

Sequential:

- Consider edges one at a time
- Maintain connected components (in a Union Find tree)

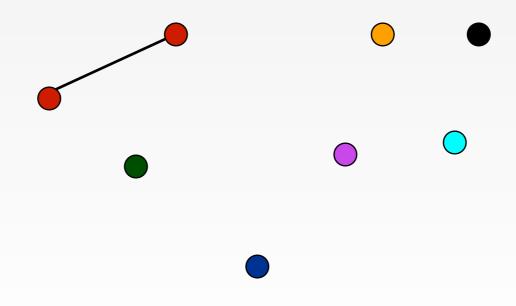


Begin: Each node is a separate component

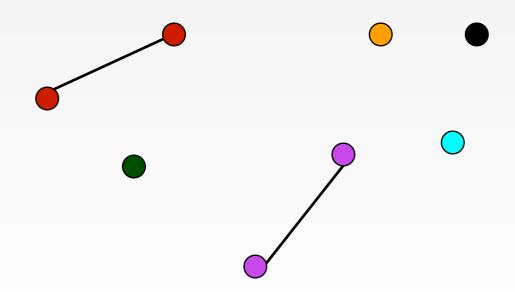


Begin: Each node is a separate component

With every edge, select one of the colors



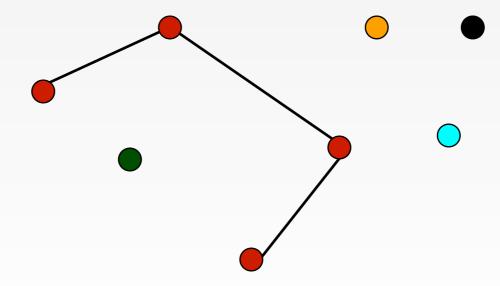
Begin: Each node is a separate component With every edge, select one of the colors



Begin: Each node is a separate component

With every edge, select one of the colors

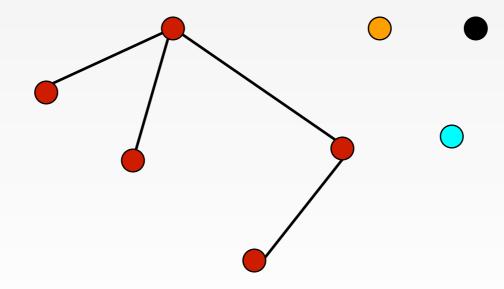
Update all of the colors in a component



Begin: Each node is a separate component

With every edge, select one of the colors

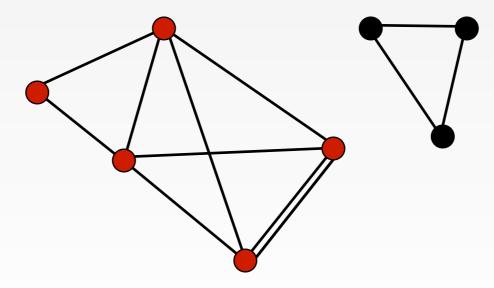
Update all of the colors in a component



Begin: Each node is a separate component

With every edge, select one of the colors

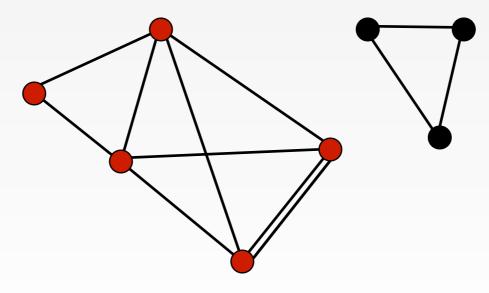
Update all of the colors in a component



Begin: Each node is a separate component

With every edge, select one of the colors

Update all of the colors in a component



Count the number of colors: 2

MR Graph Algorithmics

Sequential:

- Consider edges one at a time
- Maintain connected components (in a Union Find tree)

Sequential:

- Consider edges one at a time
- Maintain connected components (in a Union Find tree)

Filtering:

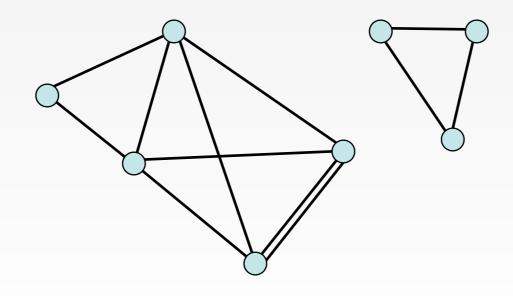
- What makes an edge redundant?

Sequential:

- Consider edges one at a time
- Maintain connected components (in a Union Find tree)

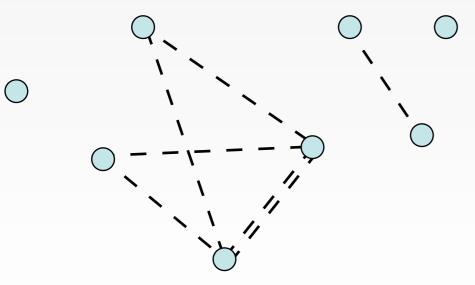
Filtering:

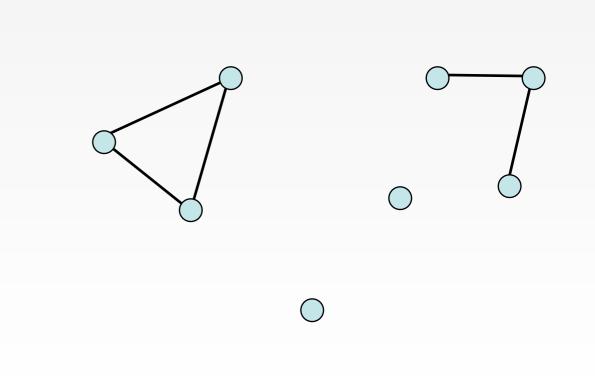
- What makes an edge redundant?
- If we already know the endpoints are connected



Given a graph:

1. Partition edges (randomly)

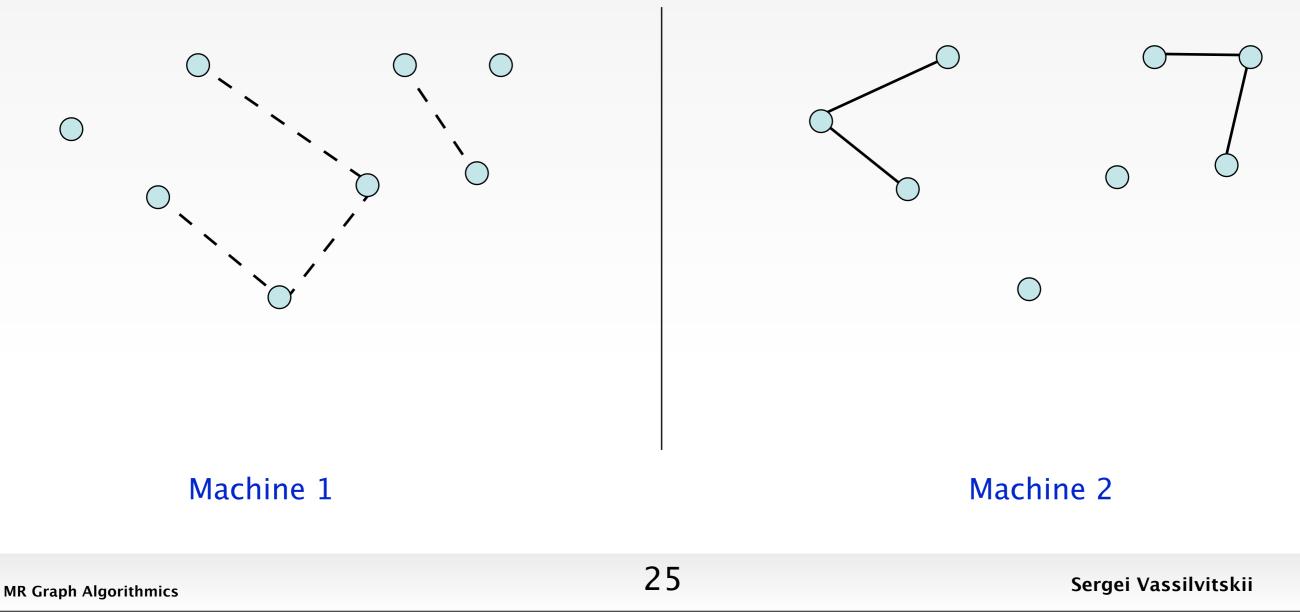




Machine 1

Machine 2

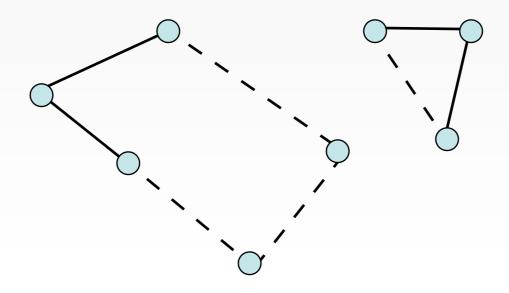
- 1. Partition edges (randomly)
- 2. Summarize (keep $\leq n 1$ edges per partition)



- 1. Partition edges (randomly)
- 2. Summarize (keep $\leq n 1$ edges per partition)
- 3. Recombine



- 1. Partition edges (randomly)
- 2. Summarize (keep $\leq n 1$ edges per partition)
- 3. Recombine
- 4. Compute CC's



Analysis

Given: *k* machines:

- Total Runtime: $T_{cc}(m/k) + T_{cc}(nk)$
- Memory per machine: O(m/k + nk)
 - Actually, can stream through edges so O(n) suffices
- 2 Rounds total

Analysis

Given: *k* machines:

- Total Runtime: $T_{cc}(m/k) + T_{cc}(nk)$
- Memory per machine: O(m/k + nk)
 - Actually, can stream through edges so O(n) suffices
- 2 Rounds total

Notes:

- Semi-streaming model: vertices must fit in memory
- Instead of two passes can achieve a trade-off between memory and number of passes

Matchings

Finding matchings

- Given an undirected graph G = (V, E)
- Find a maximum matching

Matchings

Finding matchings

- Given an undirected graph G = (V, E)
- Find a maximum matching
- Find a maximal matching

Matchings

Finding matchings

- Given an undirected graph G = (V, E)
- Find a maximum matching
- Find a maximal matching

Try random partitions:

- Find a matching on each partition
- Compute a matching on the matchings
- Does not work: may make very limited progress

Looking for redundancy

Matching:

- Could drop the edge if an endpoint already matched

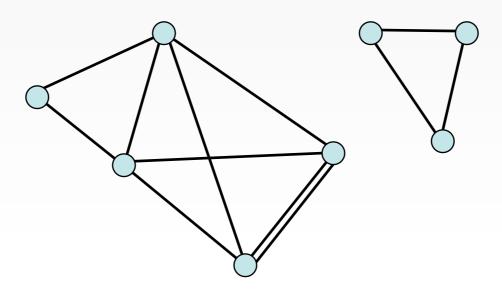
Idea:

- Find a seed matching (on a sample)
- Remove all 'dead' edges
- Recurse on remaining edges

Algorithm

Given a graph:

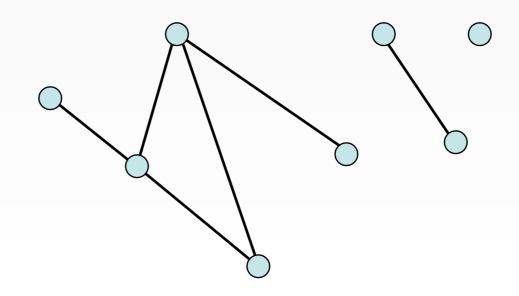
1. Take a random sample



Algorithm

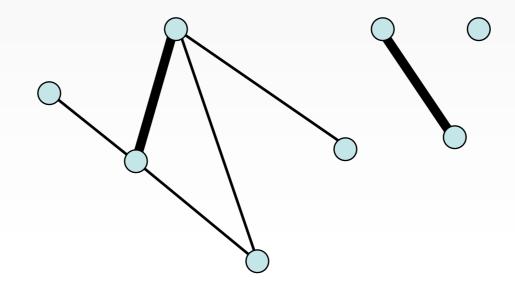
Given a graph:

1. Take a random sample



Algorithm

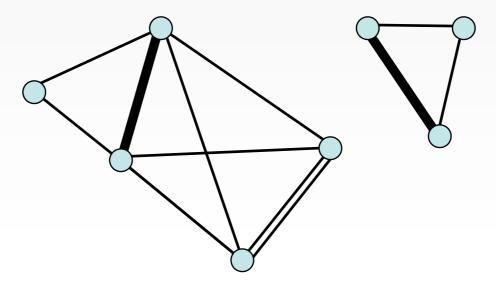
- 1. Take a random sample
- 2. Find a maximal matching on sample



Algorithm

Given a graph:

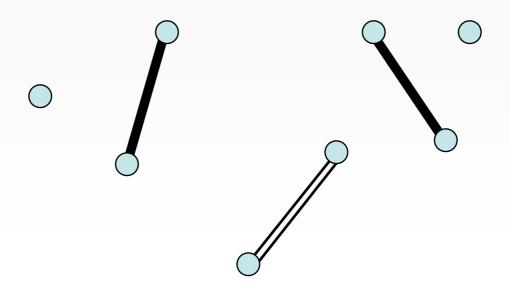
- 1. Take a random sample
- 2. Find a maximal matching on sample
- 3. Look at original graph



Algorithm

Given a graph:

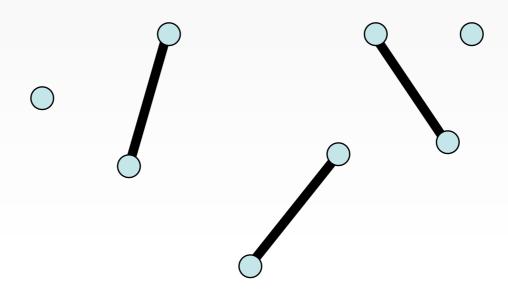
- 1. Take a random sample
- 2. Find a maximal matching on sample
- 3. Look at original graph, drop dead edges



Algorithm

Given a graph:

- 1. Take a random sample
- 2. Find a maximal matching on sample
- 3. Look at original graph, drop dead edges
- 4. Find matching on remaining edges



Key Lemma:

- Suppose the sampling rate is $p = \frac{n^{1+c}}{m}$ for some c > 0.
- Then with high probability the number of edges remaining after the prune step is at most:

$$\frac{2n}{p} = \frac{2m}{n^c}$$

The sampling rate is: $p = \frac{n^{1+c}}{m}$ for some c > 0

The sampling rate is: $p = \frac{n^{1+c}}{m}$ for some c > 0

Suppose some set $I \subset V$ is unmatched after the prune step Then I is an independent set in the sample Otherwise vertices would have been matched

The sampling rate is: $p = \frac{n^{1+c}}{m}$ for some c > 0

Suppose some set $I \subset V$ is unmatched after the prune step Then I is an independent set in the sample Otherwise vertices would have been matched

 $|\mathbf{f}||E[I]| > O(n/p)$

i.e. we have a lot of edges left over

Then the probability that none of the edges were picked is at most

 $\left(1-p\right)^{n/p} \le e^{-n}$

The sampling rate is: $p = \frac{n^{1+c}}{m}$ for some c > 0

Suppose some set $I \subset V$ is unmatched after the prune step Then I is an independent set in the sample Otherwise vertices would have been matched

 $|\mathbf{f}||E[I]| > O(n/p)$

i.e. we have a lot of edges left over

Then the probability that none of the edges were picked is at most

 $\left(1-p\right)^{n/p} \le e^{-n}$

The total possible number of such sets I is 2^n

Thus the total probability of a bad event (too many edges left over) is:

 $2^n \cdot e^{-n} \le 0.75^n$

MR Graph Algorithmics

Key Lemma:

- Suppose the sampling rate is $p = \frac{n^{1+c}}{m}$ for some c > 0.
- Then with high probability the number of edges remaining after the prune step is at most:

$$\frac{2n}{p} = \frac{2m}{n^c}$$

Corollaries:

- Given n^{1+c} memory, algorithm requires O(1) rounds
- Given $O(n \log n)$ memory, algorithm requires $O(\frac{\log n}{\log \log n})$ rounds.

- PRAM simulations: $\Theta(\log n)$ rounds

Outline: Graph Algorithms

Dense Graphs

- Connectivity
- Matching

Sparse Graphs

- Pregel Model
- Connectivity
- Matchings

Application

- Densest Subgraph

Optimizing Graphs

Computation:

- Most often computation is along the edges
- Djikstra's shortest path algorithm

Data:

- Graph itself usually does not change
- Pass values around vertices

Pregel & Giraph

Optimizations:

- Partition the graph once across the machines
- Keep the graph structure local (don't shuffle it!)

Pregel & Giraph

Optimizations:

- Partition the graph once across the machines
- Keep the graph structure local (don't shuffle it!)

Implications:

- Vertex central view of the data
- Each round:
 - Each vertex collects all messages sent to it
 - Send messages to its neighbors
 - Can also modify the graph

Pregel & Giraph

Optimizations:

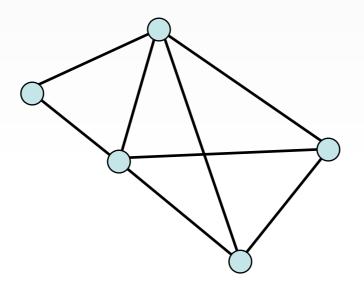
- Partition the graph once across the machines
- Keep the graph structure local (don't shuffle it!)

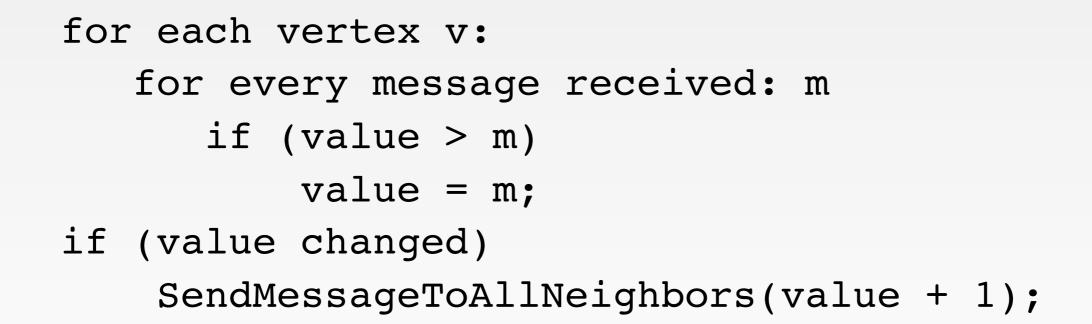
Implications:

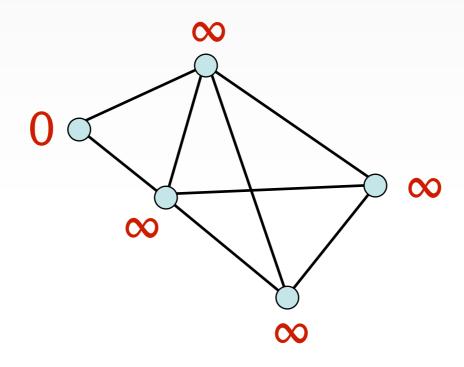
- Vertex central view of the data
- Each round:
 - Each vertex collects all messages sent to it
 - Send messages to its neighbors
 - Can also modify the graph
- Under the covers:
 - Vertices act as a key
 - Edges are stored locally with each vertex, reducing shuffle time

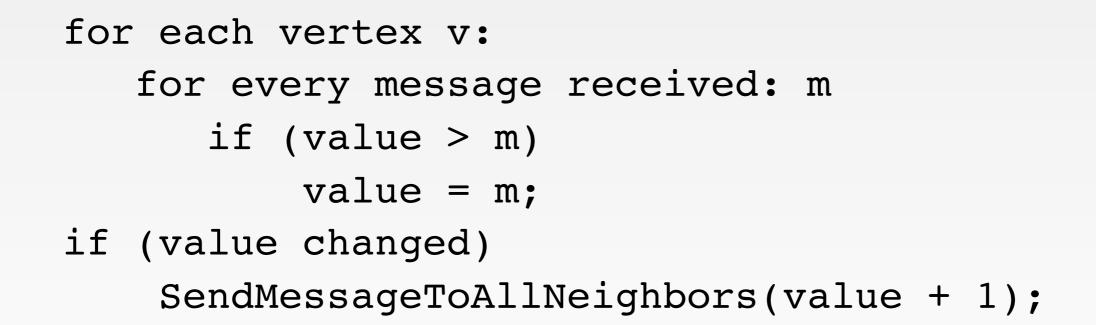
```
for each vertex v:
    for every message received: m
        if (value > m)
           value = m;
if (value changed)
        SendMessageToAllNeighbors(value + 1);
```

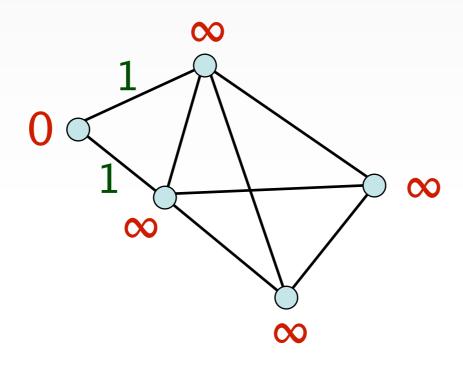
for each vertex v:
 for every message received: m
 if (value > m)
 value = m;
if (value changed)
 SendMessageToAllNeighbors(value + 1);

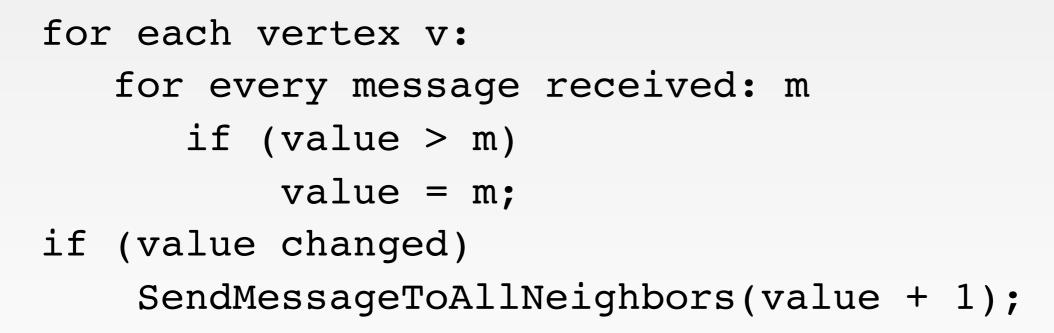


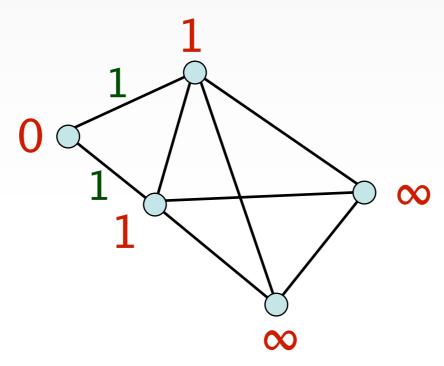


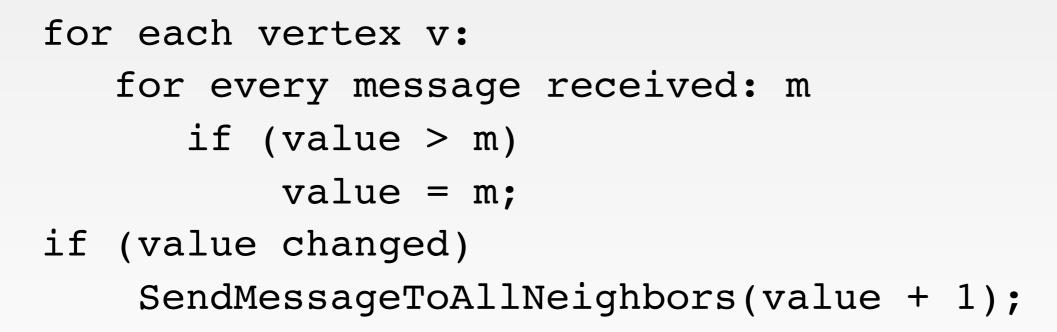


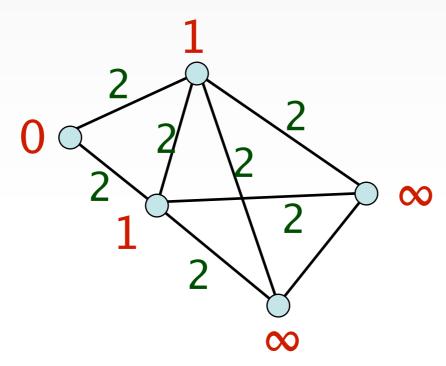


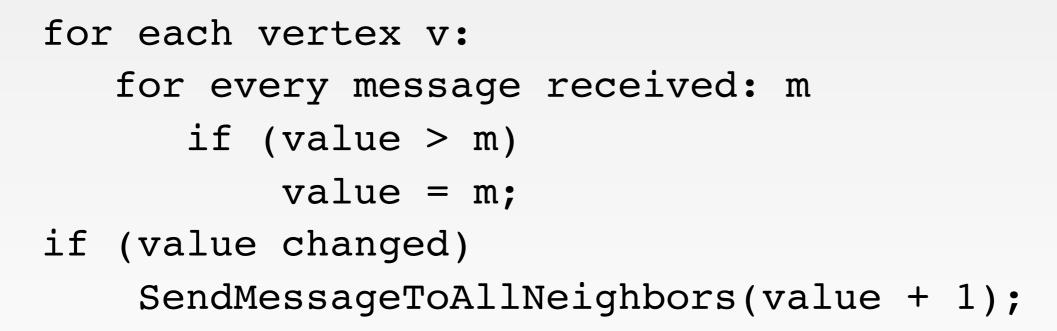


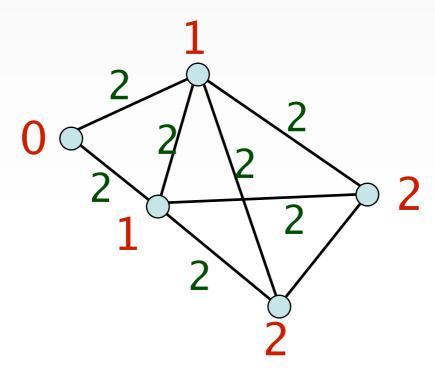


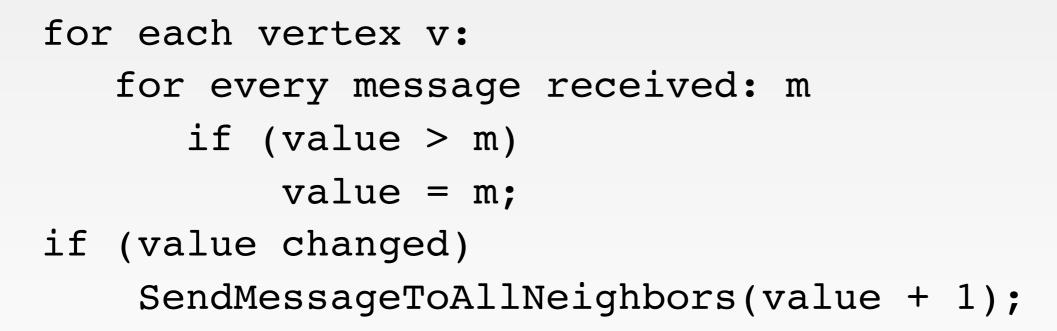


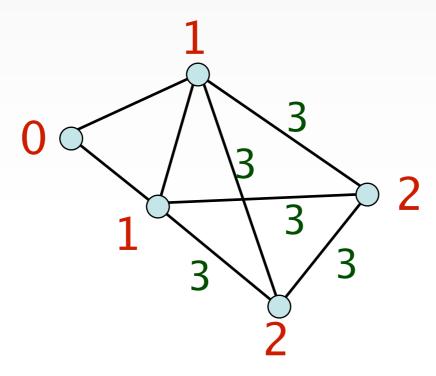


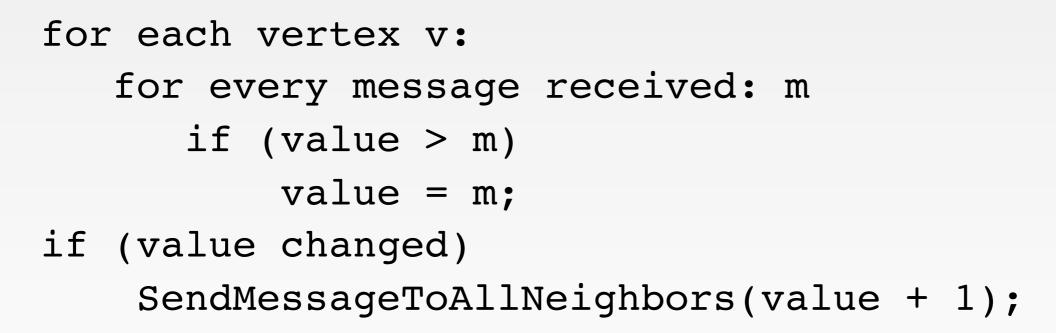


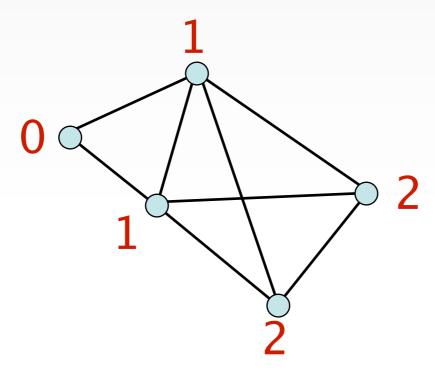












Simple Algorithms:

- BFS,
- shortest paths (single source & all pairs)

- ..

What about:

- connectivity?
- matchings?

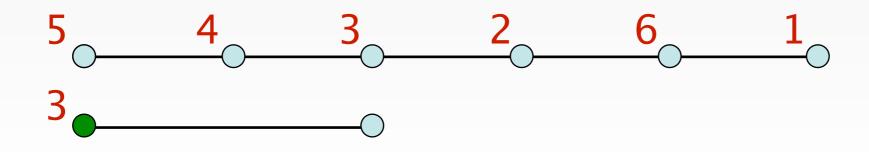
- ...

- Begin with a unique id at every node
- In each super-round:
 - Every node identifies the minimum in its 2-neighborhood
 - Adds edges from all neighbors at least as big to the minimum
 - Sets own id to the minimum

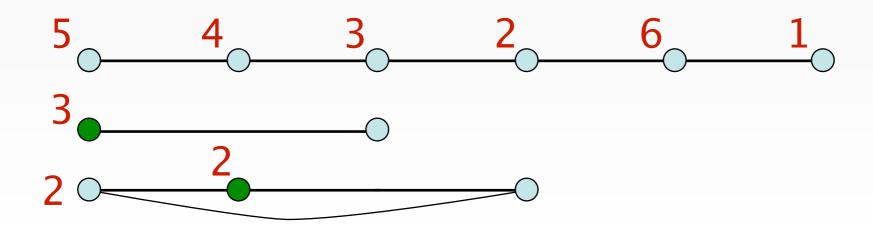
- Begin with a unique id at every node
- In each super-round:
 - Every node identifies the minimum in its 2-neighborhood
 - Adds edges from all neighbors at least as big to the minimum
 - Sets own id to the minimum



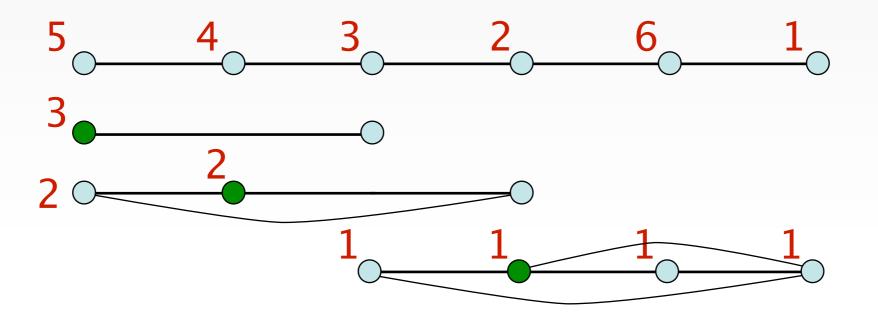
- Begin with a unique id at every node
- In each super-round:
 - Every node identifies the minimum in its 2-neighborhood
 - Adds edges from all neighbors at least as big to the minimum
 - Sets own id to the minimum



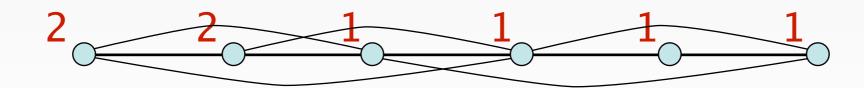
- Begin with a unique id at every node
- In each super-round:
 - Every node identifies the minimum in its 2-neighborhood
 - Adds edges from all neighbors at least as big to the minimum
 - Sets own id to the minimum



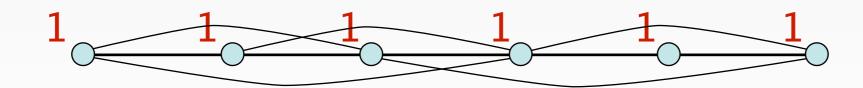
- Begin with a unique id at every node
- In each super-round:
 - Every node identifies the minimum in its 2-neighborhood
 - Adds edges from all neighbors at least as big to the minimum
 - Sets own id to the minimum



- Begin with a unique id at every node
- In each super-round:
 - Every node identifies the minimum in its 2-neighborhood
 - Adds edges from all neighbors at least as big to the minimum
 - Sets own id to the minimum



- Begin with a unique id at every node
- In each super-round:
 - Every node identifies the minimum in its 2-neighborhood
 - Adds edges from all neighbors at least as big to the minimum
 - Sets own id to the minimum



- Begin with a unique id at every node
- In each super-round:
 - Every node identifies the minimum in its 2-neighborhood
 - Adds edges from all neighbors at least as big to the minimum
 - Sets own id to the minimum
- Analysis:
 - Takes $O(\log n)$ rounds to complete
 - Add O(n) edges per round

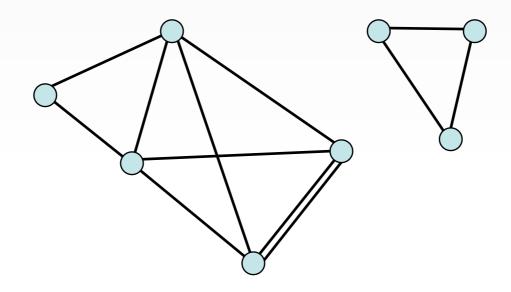
- Begin with a unique id at every node
- In each super-round:
 - Every node identifies the minimum in its 2-neighborhood
 - Adds edge from itself to the minimum
 - Sets own id to the minimum
- Conjecture
 - This takes also $O(\log n)$ rounds to complete

An example of adapting the spirit of a PRAM model

- Leads to an $O(\log n)$ algorithm
- With very simple computations per round
- Can be implemented either in MapReduce or in the Congest model
- Due to Israeli & Itai, 1986

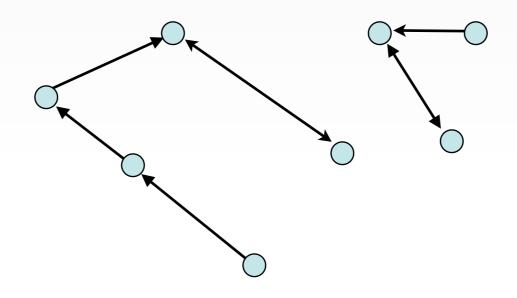
Each Super-Round:

- Each Node picks one neighboring edge, directed away

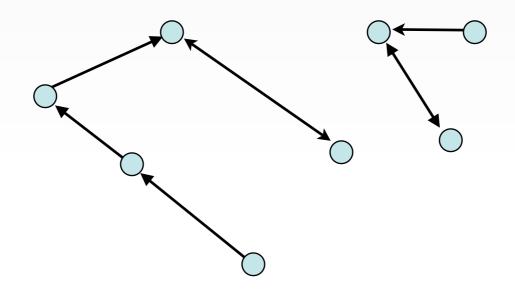


Each Super-Round:

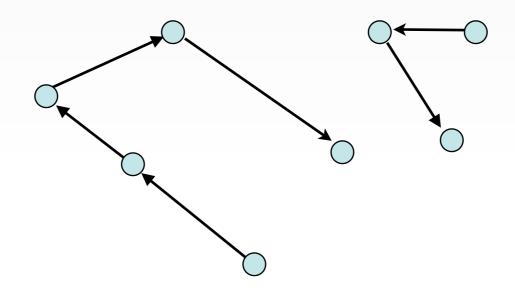
- Each Node picks one neighboring edge, directed away



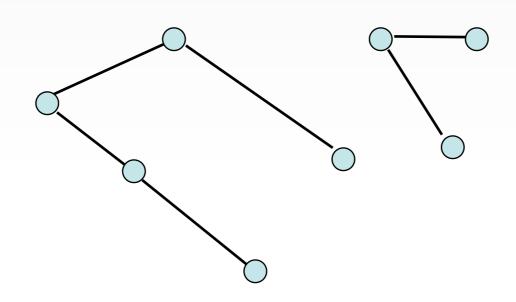
- Each Node picks one neighboring edge, directed away
- Nodes with in-degree > 1, pick one edge at random



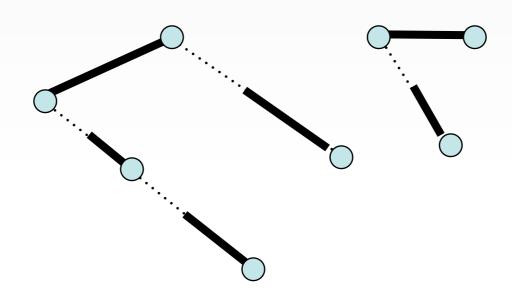
- Each Node picks one neighboring edge, directed away
- Nodes with in-degree > 1, pick one edge at random



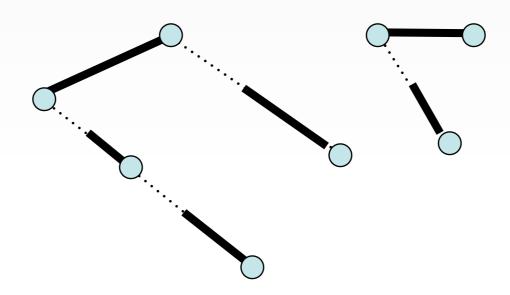
- Each Node picks one neighboring edge, directed away
- Nodes with in-degree > 1, pick one edge at random
- Nodes of degree 2 select one edge at random, those of degree 1 select their neighboring edge



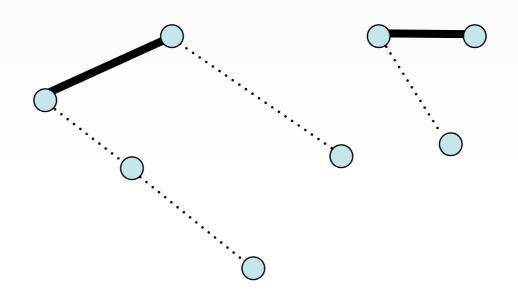
- Each Node picks one neighboring edge, directed away
- Nodes with in-degree > 1, pick one edge at random
- Nodes of degree 2 select one edge at random, those of degree 1 select their neighboring edge



- Each Node picks one neighboring edge, directed away
- Nodes with in-degree > 1, pick one edge at random
- Nodes of degree 2 select one edge at random, those of degree 1 select their neighboring edge
- If both endpoints selected same edge, add it to the matching



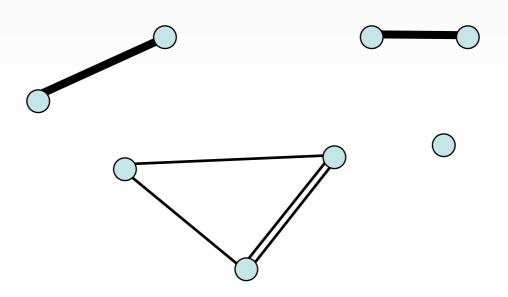
- Each Node picks one neighboring edge, directed away
- Nodes with in-degree > 1, pick one edge at random
- Nodes of degree 2 select one edge at random, those of degree 1 select their neighboring edge
- If both endpoints selected same edge, add it to the matching



Each Super-Round:

- Each Node picks one neighboring edge, directed away
- Nodes with in-degree > 1, pick one edge at random
- Nodes of degree 2 select one edge at random, those of degree 1 select their neighboring edge
- If both endpoints selected same edge, add it to the matching

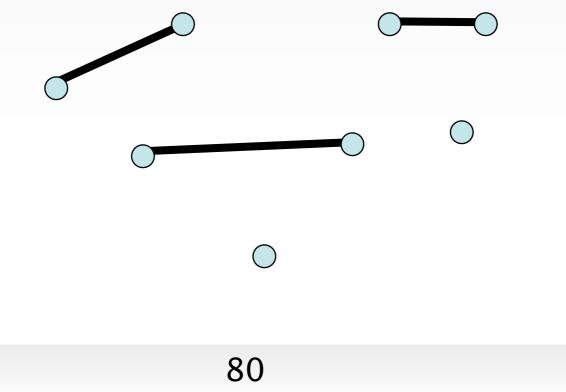
Recurse on unmatched nodes



Each Super–Round:

- Each Node picks one neighboring edge, directed away
- Nodes with in-degree > 1, pick one edge at random
- Nodes of degree 2 select one edge at random, those of degree 1 select their neighboring edge
- If both endpoints selected same edge, add it to the matching

Recurse on unmatched nodes



Sparse Graphs Conclusion

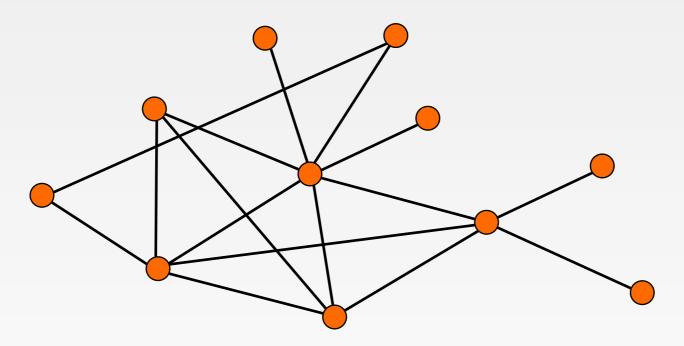
When nodes don't fit into memory

- Very different from Streaming algorithms
- Possible to adapt PRAM algorithms
- Many open questions!

Applications

Back to Social Graph Mining

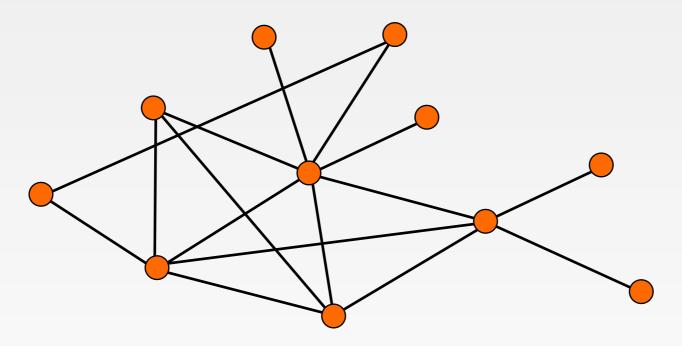
- Yesterday: Finding tight knit communities
- Today: Finding large communities



Problem: Given a graph G = (V, E), find $V' \subseteq V$ that maximizes:

$$\rho = \frac{|E(V')|}{|V'|}$$

MR Graph Algorithmics



Problem: Given a graph G = (V, E), find $V' \subseteq V$ that maximizes:

 $\rho = \frac{|E(V')|}{|V'|}$

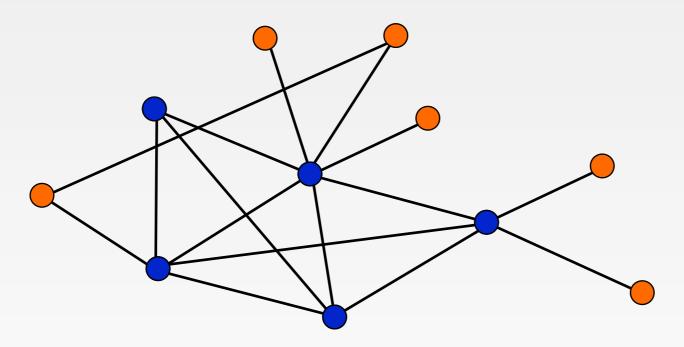
Useful Primitive in Graph Analysis:

- Community Detection
- Graph Compression
- Link SPAM Mining
- Many other applications

MR Graph Algorithmics

84

Sergei Vassilvitskii



Problem: Given a graph G = (V, E), find $V' \subseteq V$ that maximizes:

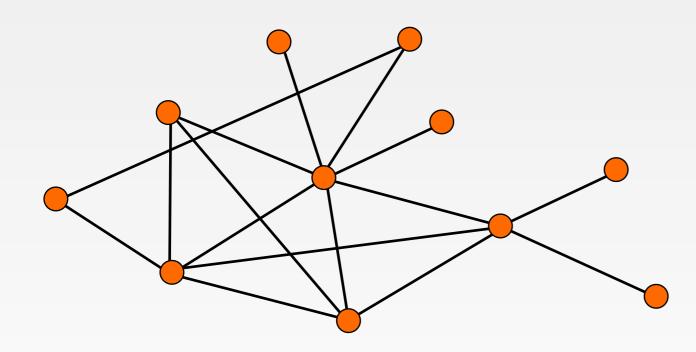
 $\rho = \frac{|E(V')|}{|V'|}$

Useful Primitive in Graph Analysis

Can be solved exactly:

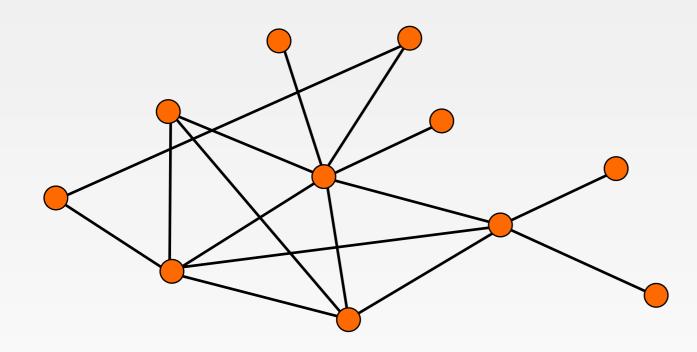
- LP Formulation
- Multiple Max flow computations

MR Graph Algorithmics



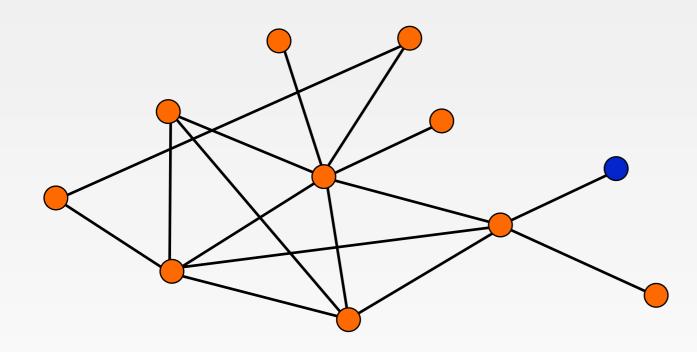
Simple Algorithm [Charikar '00]:

- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph



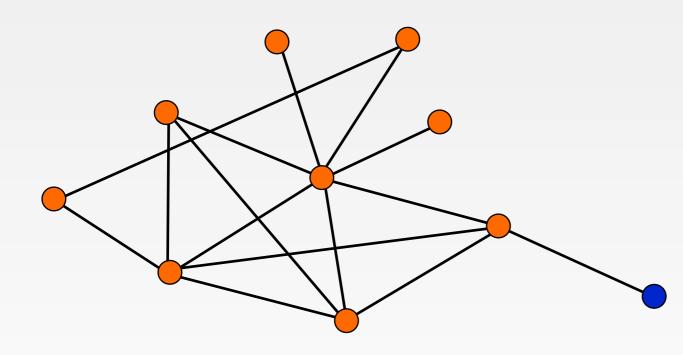
Best Density: 16/11 Current Density: 16/11

- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph



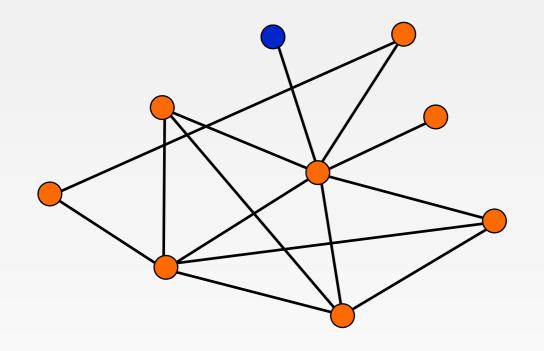
Best Density: 16/11 Current Density: 16/11

- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph



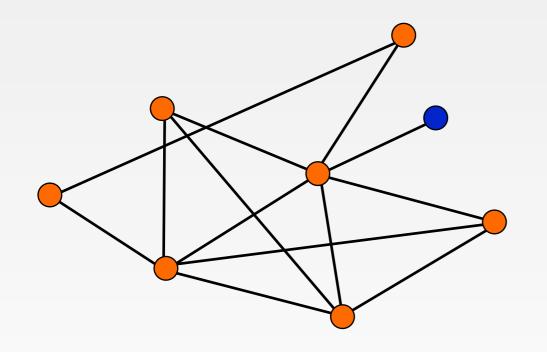
Best Density: 15/10 Current Density: 15/10

- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph



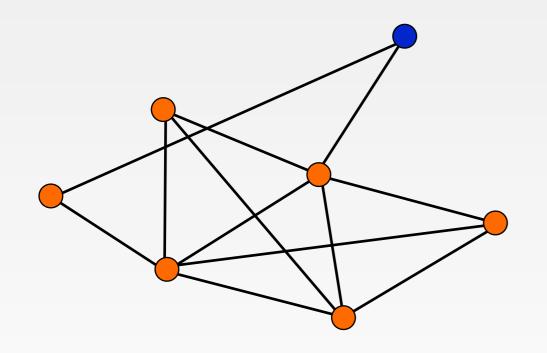
Best Density: 14/9 Current Density: 14/9

- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph



Best Density: 13/8 Current Density: 13/8

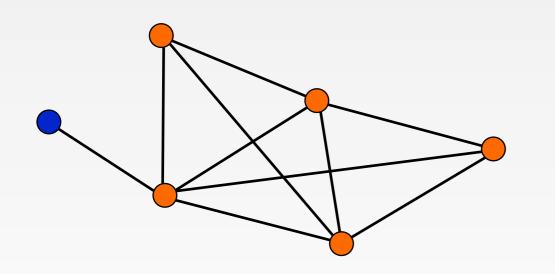
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph



Best Density: 12/7 Current Density: 12/7

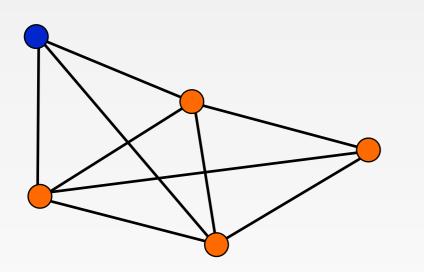
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 12/7 Current Density: 10/6



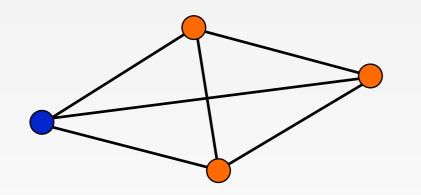
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 9/5 Current Density: 9/5



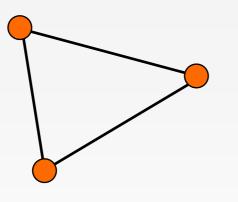
- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 9/5 Current Density: 6/4



- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 9/5 Current Density: 3/3



- Iteratively remove the lowest degree node and update vertex degrees
- Keep the densest intermediate subgraph

Finding Dense Subgraphs (Analysis)

Approximation Ratio:

- Guaranteed to return a 2-approximation

Proof:

- Let $V^* \subseteq V$ be the optimal solution, and $\lambda^* = \frac{|E[V^*]|}{|V^*|}$ the optimal density.
- Consider the first time a vertex from V^* is removed.
- Every vertex in V^* has degree at least λ^* .
 - Otherwise can improve optimum density
- Therefore the density of that subgraph is at least:

$$\frac{\lambda^* |V^*|}{2|V^*|} = \lambda^*/2$$

Finding Dense Subgraphs (Analysis)

Approximation Ratio:

- Guaranteed to return a 2-approximation

Running Time:

- RAM:
 - Maintain a heap on vertex degrees
 - Update keys upon removing every edge
 - Straightforward implementation in $O(m \log n)$
- Streaming:
 - Seemingly need one pass per vertex to adapt this algorithm
 - Can show that need $\Omega(n/\log n)$ memory if using $O(\log n)$ passes
- MapReduce?
 - Open question in Chierichetti, Kumar and Tompkins WWW '10.

Sequential Algorithm:

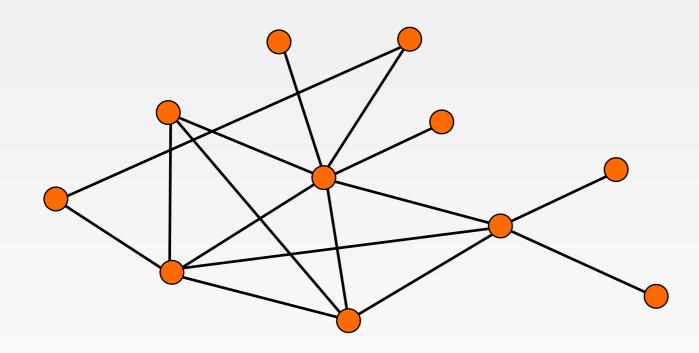
- Remove the node with the smallest degree

Sequential Algorithm:

- Remove the node with the smallest degree

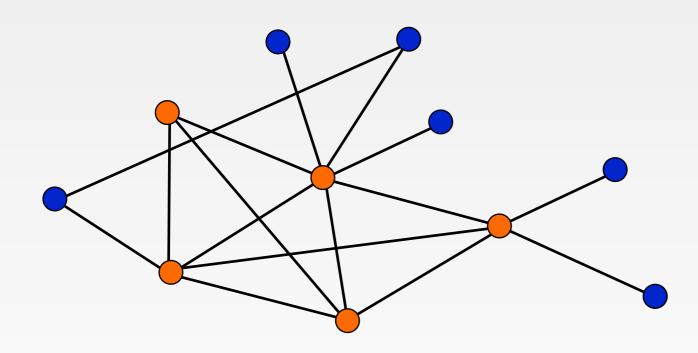
Parallel Version:

- Remove all nodes with less degree less than $(1 + \epsilon)$ * average degree
- Of course this also includes the smallest degree node
- Every Step:
 - Round 1: Count remaining edges, vertices, compute vertex degrees
 - Distributed counting
 - Round 2: Remove vertices with degree below threshold
 - Distributed checking



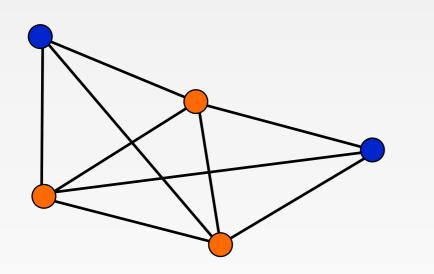
Best Density: 16/11 Current Density: 16/11 Average Degree: 32/11

- Iteratively remove nodes with degree below average and update vertex degrees
- Keep the densest intermediate subgraph



Best Density: 16/11 Current Density: 16/11 Average Degree: 32/11

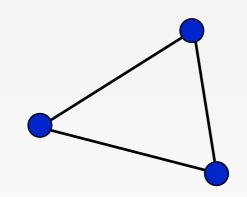
- Iteratively remove nodes with degree below average and update vertex degrees
- Keep the densest intermediate subgraph



Best Density: 9/5 Current Density: 9/5 Average Degree: 18/5

- Iteratively remove nodes with degree below average and update vertex degrees
- Keep the densest intermediate subgraph

Best Density: 9/5 Current Density: 3/3 Average Degree: 6/3



- Iteratively remove nodes with degree below average and update vertex degrees
- Keep the densest intermediate subgraph

Parallel Densest Subgraph (Analysis)

Algorithm:

- Each round remove all vertices with degree less than $(1 + \epsilon) *$ average.

How many vertices do we remove?

- One cannot have too many vertices above average (This is not Lake Wobegon)
- Easy [Markov inequality] : at most a $\frac{1}{1+\epsilon}$ fraction of vertices remains in every round.
- Therefore algorithm terminates after $O\left(\frac{1}{\epsilon}\log n\right)$ rounds

Parallel Densest Subgraph (Analysis)

Algorithm:

- Each round remove all vertices with degree less than $(1 + \epsilon) *$ average.

How many vertices do we remove?

- One cannot have too many vertices above average (This is not Lake Wobegon)
- Easy [Markov inequality] : at most a $\frac{1}{1+\epsilon}$ fraction of vertices remains in every round.
- Therefore algorithm terminates after $O\left(\frac{1}{\epsilon}\log n\right)$ rounds

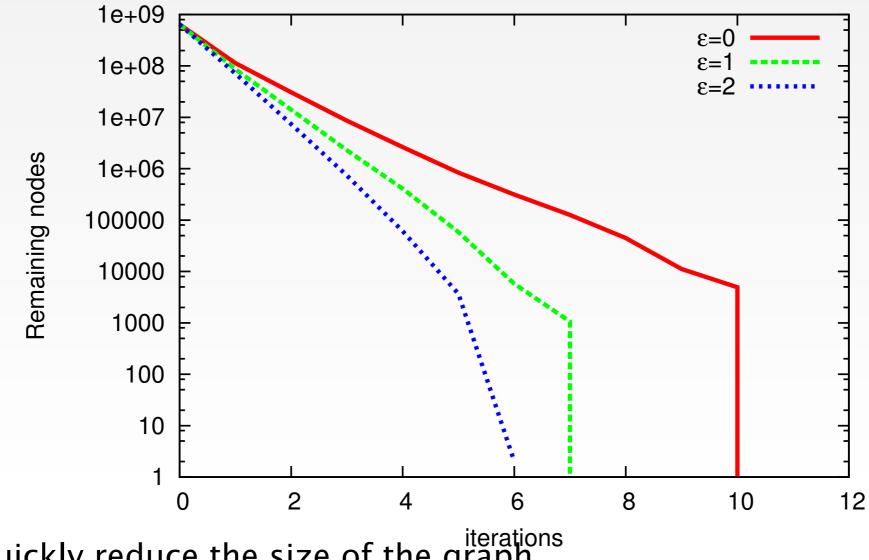
Approximation Ratio:

- Achieves a $(2 + \epsilon)$ approximation in the worst case
 - Only look at the degree of the nodes removed as compared to average. in

MR Graph Algorithmics

How well does it work?

IM Network graph: 650M nodes, 6.1B edges



IM: Remaining graph vs iterations

- Quickly reduce the size of the graph.
- Approximation ratio between 1.06 and 1.4 at $\epsilon = 1$

MR Graph Algorithmics

Overall

Improving the sequential algorithm:

- Original algorithm: O(m) heap updates:
 - Update vertex degrees every time an edge is removed.
- New algorithm O(n) heap updates:
 - Number of vertices decreases geometrically every round

Wrap Up

Graphs:

- At the core of many large data computations
- Many follow heavy tailed degree distirbutions
- Dense: Sample & Prune leads to fast algorithms
- Sparse: Adapt PRAM Algorithms

Wrap Up

Graphs:

- At the core of many large data computations
- Many follow heavy tailed degree distirbutions
- Dense: Sample & Prune leads to fast algorithms
- Sparse: Adapt PRAM Algorithms

Next Up:

- Clustering & Machine Learning

References

- Graph Evolution: Densification and Shrinking Diameters. Jure Leskovic, Jon Kleinberg, Christos Faloutsos, TKDD 2007.
- Filtering: A Method for Solving Graph Problems in MapReduce. Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, S.V., SPAA 2011.
- Pregel: A System for Large-Scale Graph Processing. Grzegorz Malewicz, Matthew Austern, Aart Bik, James Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski, SIGMOD 2010.
- Finding Connected Components on MapReduce in Logarithmic Rounds. Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, Anish Das Sarma. ArXiV 2012.
- A Fast and Simple Randomized Parallel Algorithm for Maximal Matching. Amos Israeli, Alon Itai, Information Processing Letters 1986.
- Greedy Approximation Algorithms for Finding Dense Components in a Graph. Moses Charikar, APPROX 2000.
- Densest Subgraph in Streaming and MapReduce. Bahman Bahmani, Ravi Kumar, S.V., VLDB 2012.